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1. INTRODUCTION

This talk is an anecdotal account of my role in the
origins of lattice gauge theory, prepared for delivery
on the thirtieth anniversary of the publication of my
article called “Confinement of Quarks” in 1974 [1].
The account is intended to supplement prior books
on the history of elementary particle theory in the
1960’s and 1970’s, especially the book by Andrew
Pickering called Constructing Quarks [2]. Another
reference is a more recent history by Hoddeson et al.
[3]. The book of Pickering is especially useful
because it discusses how a number of physicists
developed expertise in one specific aspect of
elementary particle physics but then had to adapt to
new developments as they occurred. Pickering makes
clear that each physicist in the story had to acquire
new forms of expertise, while building on the
expertise each had already acquired, in order to
pursue these developments. But he did not give a full
account of the expertise that I developed and used in
my contributions to the subject. He provided only a
few details on the history of lattice gauge theory, all
confined to a single footnote (see [3] for more on the
history of lattice gauge theory). This talk fills in
some of the gaps left in Pickering’s history.

I also describe some blunders of mine, report on a
bizarre and humorous incident, and conclude with
some concerns. Our knowledge of the true nature of
the theory of strong interactions is still limited and
uncertain. My main worry is that there might be
currently unsuspected vector or scalar colored
particles that supplement color gluons and that result
in unsuspected additional terms in the QCD
Lagrangian for it to fit experiment. I also worry that
there is not enough research on approaches to
solving QCD that could be complementary to Monte
Carlo simulations, such as the lack of any
comparable research build-up on light-front QCD. I
share the concern of many about how to justify

continued funding of lattice gauge theory, and of
high-energy physics overall, into the far future: see
the end of this talk.

I note that over the past few years I have spent
more time researching the history of science than I
have on physics. I am particularly indebted to the
Director and staff of the Dibner Institute for the
History of Science and Technology, at MIT, for the
award of a fellowship for the Fall of 2002. The
Dibner Institute has a project known as the HRST
project that includes an interview with me about my
work on renormalization in the 1960’s, work that
will be touched on later in this talk. On this latter
part of my history, a more extensive account is
provided in [4]. This talk is informed by my
experience with historical research, although it is
intended to have the anecdotal flavor that physicists
expect in such talks.

This talk is divided into six further sections. The
second section is a bow to the present state and
future prospects for lattice gauge theory. These
prospects seem considerably rosier today than they
were when I ceased my own involvement in lattice
gauge research around 1985. The third section is
about the period in 1973 and 1974 during which I
wrote my 1974 article. The fourth section is about
the earlier period of my research from 1958 to 1971,
beginning with my thesis project suggested by
Murray Gell-Mann. In the fifth section I report on
blunders of mine after 1970, and also report on a
bizarre episode that occurred at that time. In the sixth
section I raise some questions for research, including
the issue of possible partners for the gluon. A
conclusion ends this talk.

2. HOMAGE TO LATTICE GAUGE THEORY
TODAY

The current knowledge base in lattice gauge theory
dwarfs the state of knowledge in 1974, and even the
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state of knowledge in 1985. The accuracy and
reliability of lattice gauge computations is vastly
improved thanks in part to improved algorithms, in
part to increased computing power, and in part to the
increased scale of the research effort underway
today. The breadth of topics that have been
researched is also greater today than in earlier
decades, as one can surely tell by comparing these
Proceedings with any similar conference proceedings
from twenty or more years ago. But this does not
mean that the present state of lattice gauge
computations is fully satisfactory. The knowledge
and further advances that will likely accumulate over
the next thirty years should be just as profound as the
advances that have occurred over the last thirty
years. Researchers over the next thirty years should
have the help of further advances in computing
power that, as best as can be foreseen today, are
likely to be as profound as the technological
advances of the past twenty or more years.

Thirty years can seem like an eternity to anyone
who actually lives through thirty years of adulthood.
But for the development of physics, thirty years is
only a moment. The oldest part of physics and
astronomy, namely research on the motions of the
Earth, Moon and Sun, dates back over 2700 years (!)
to the still valuable data of the Babylonians, recorded
on durable tablets. See, e.g., the article on this topic
by Gutzwiller [5]. The main change over the 2700-
year history is that the accuracy of observation and
prediction both improved repeatedly over the whole
2700-year period, although observation dominated
prediction before Copernicus. The improvement after
Copernicus was aided by profound advances in
instrumentation, made possible in part by profound
changes in society as a whole as today’s advanced
economy emerged from the far more limited
economy of the time of Copernicus. For example,
Galileo’s telescope was little more than a spyglass;
repeated improvements since then have now resulted
in the Hubble Space Telescope and even more
powerful ground-based instruments. In the case of
research on the Earth-Moon-Sun system, see [5] for
more details.

I will not try to imagine what lattice gauge theory
would be like 2700 years from now. Could it remain
a topic of research for as long as research on the
Earth-Moon-Sun system has lasted? If so, what
accuracy could conceivably be achieved over this
long time period? But it is worth noting that it would

have been very difficult for researchers of several
centuries ago to imagine the accuracy achieved today
in Earth-Moon-Sun studies, or in astronomy and
physics more generally, and especially to conceive of
the extent and quality of instrumentation that
underlies today’s accuracy. It would have been
equally difficult to predict the economic changes that
have occurred over the same period. Surely it is just
as difficult to forecast what the circumstances could
be for scientific research over two millennia into the
future from now.

Nevertheless, I still remember a talk on the future
of physics delivered by Richard Feynman at MIT in
the early 1960’s. He followed Rudolf Peierls, who
looked ahead about a century, based on the state of
physics about a century earlier, in 1860. According
to my possibly faulty memory, Feynman proposed to
look forward a thousand years, saying that he was
completely safe in his attempt because no one alive
to hear his talk could prove him wrong. He said that
he could not use history to help him because who
was doing physics in 960? All I remember from his
predictions was that one possibility was that so many
discoveries would occur over the next thousand years
that physicists would become bored with making
more such discoveries. He discussed other
possibilities as well, which were surely more
consistent with the fact that astronomers have yet to
become bored with research on the solar system after
around 2700 years of research.

3. FROM ASYMPTOTIC FREEDOM TO
LATTICE GAUGE THEORY   (1973-4)

The seminal papers on asymptotic freedom by
Gross and Wilczek [6] and Politzer [7] were both
published in June of 1973, but their content had
spread in preprint form earlier. The discovery of
asymptotic freedom, made possible by earlier
developments on the renormalizability of non-
Abelian gauge theories by Veltman and ‘t Hooft [8],
made it immediately clear, to me as well as many
others, that the preferred theory of strong interactions
was quantum chromodynamics (QCD). The
Lagrangian for QCD had already been written down
by Gell-Mann and Fritzsch [9].

Unfortunately, I found myself lacking the detailed
knowledge and skills required to conduct research
using renormalized non-Abelian gauge theories. My
research prior to 1973 had not required this
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knowledge so I had never spent the time necessary to
acquire it.

What was I to do, especially as I was eager to jump
into this research with as little delay as possible? I
realized that from my prior work in statistical
mechanics (see Sect. 4) I knew a lot about working
with lattice theories, including the construction of
high temperature expansions for such theories. I
decided I might find it easier to work with a lattice
version of QCD than with the existing continuum
formulation of this theory. Moreover, this meant I
could be doing original research immediately, rather
than having to spend weeks or months absorbing
other people’s research. (I did not learn until much
later that a graduate student at UCLA named J. Smit
had already been formulating lattice gauge theory,
and that Polyakov also worked it out independently
of me: see [10].)
 Formulating the theory on a lattice turned out to be
straightforward, and by sometime in the summer of
1973 I was far enough along to give a talk on lattice
gauge theory at Orsay. (I do not remember this talk
today, but it is referenced in an article by Balian,
Drouffe, and Itzykson [11]. Finding such highly
credible and contemporary clues to a scientist’s
activities is, I learned, a major goal of historical
research.) By summer, I knew that:

• The gauge theory lives on a Euclidean four-
dimensional lattice.

• The gauge variables are located on nearest
neighbor links of the lattice and must be unitary
matrices from the gauge group itself, rather than
being variables from the infinitesimal Lie algebra
of the group similar to the gauge variables of the
continuum theory.

• The quark variables are purely anti-commuting
objects (see [1]) living at lattice sites.

• There are nearest neighbor couplings of the quark
variables with a coefficient denoted K , and
plaquette-type couplings of the gauge variables

with a coefficient of order 1/g
2

.

• There is a separate gauge invariance of the theory
for each lattice site.

• The theory with a non-zero lattice spacing gives
finite results without any requirement for gauge
fixing terms.

However, the concept of confinement was
nowhere in my thinking when I started my effort to
construct lattice gauge theory. I had no idea that
confinement would be the central and the most
interesting outcome of this research. Even the lack of
need for gauge fixing only became apparent after I
had worked out the formulation of the lattice theory.

According to my memory of events from thirty
years ago, once I wrote down the lattice Lagrangian
[1], it was immediately obvious that it would have a
strong coupling expansion because the coefficient of

the gauge plaquette term was 1/g
2

, rather than g
2

.
Moreover, for quarks, the lattice theory had both a
single site term and a nearest neighbor term, and the
coefficient K of the nearest neighbor term could also
be made artificially small if I chose to do so. (For my
notation, see Eq. (3.12) of [1].) But when I started to
study the strong coupling expansion, obtained by
assuming g  is large and K  is small, I ran into a
barrier. I could carry out the mathematical
manipulations required to produce the strong
coupling expansion with ease. But for many months I
could not turn the mathematics into a physical
interpretation that I could understand. My problem,
as best I can mentally reconstruct my struggles of so
long ago, was that I did not spend enough time
studying the very simple limit in which all purely
space-like terms with small coefficients are dropped
altogether from the Lagrangian. This simplification
leaves only gauge field plaquettes in one space and
the time direction and nearest neighbor quark
couplings in the time-like direction. In this simple
limit there are a number of crucial results, all
resulting from analysis of the transfer matrix
formalism linking the lattice Lagrangian to the
system’s Hamiltonian (see [12] for this formalism),
namely:

• All non-gauge-invariant states, such as single
quark states, have infinite energy.

• The elementary particles of the theory are quarks
that live at single lattice sites and “string bits” that
live on space-like nearest neighbor sites.
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• The masses of gauge-invariant composite multi-
particle states are sums of the masses of each
constituent, with the mass of a quark constituent
being –ln (K) and the mass of a constituent string
bit being –2 ln (g). For K and g small enough, both
these masses are large, indeed much larger than the
inverse of the lattice spacing, which is taken to be
unity in these formulae. This rule includes the
appearance of strings built of string bits whose
total mass is proportional to the length of the
string.

These simple results are all easily verified from the
form of the transfer matrix when K and g are small
and when purely space-like terms in the action are
dropped. But rather than focus on this simple limit, I
spent months trying to make sense of the vast
number and the complexity of the diagrams that arise
when purely space-like terms are taken into account
rather than neglected. I would stare at the rules for
constructing the strong coupling expansion (large g,
small K ) and wonder what examples I should
actually compute in order to improve my
understanding of it, but be unable to identify a
specific computation that was likely to help me.
Then I would spend time studying various papers on
string theory, including one by Susskind, and at least
one of the papers of Kogut and Susskind, and make
only a little progress in extracting useful insights
from their work. But the situation did eventually
become clarified enough so that I was able to write
the article now being celebrated. This article was
received by the Physical Review in June of 1974,
almost a year after my talk at Orsay.

The resulting article says nothing about the
struggles I went through to produce it, and indeed
covers rather limited ground altogether. The detailed
rules for small K and g stated above are absent. The
basic formalism is present, along with the concept of
gauge loops and the area law for large gauge loops
implying quark confinement. The lack of any need
for gauge fixing was noted. Connections to string
theory are noted, including the appearance of
diagrams involving sums over surfaces: but the
article questions whether it will be easy to link sums
over discrete surfaces on the lattice to sums over
continuum surfaces in string theory. A few other
topics are dealt with by referring to other papers,
mostly not my own.

From its inception, I was not alone in having the
skills needed to conduct research on lattice gauge
theory. The lattice gauge theory was a discovery
waiting to happen, once asymptotic freedom was
established. Franz Wegner published an earlier paper
on an Ising-like theory with plaquette couplings that
has local gauge invariance [13]. My 1974 article has
references to papers then about to be published by
Balian, Drouffe, and Itzykson [11] and Kogut and
Susskind [14]. If I had not completed and published
my work in a timely fashion, then it seems likely that
Smit, Polyakov, or both [10] would have produced
publications that would have launched the subject.

In any case, while I have focused on the history of
my own article, a true and more extensive history of
the origins of lattice gauge theory is a history of a
number of individuals who contributed to the initial
set of articles on lattice gauge theory in 1974 and
1975. Some of those individuals are mentioned
above. Others contributed to the history of topics that
provided the necessary background for these articles,
from the pioneering work on the renormalizability of
non-Abelian gauge theories to the statistical
mechanical background that I drew on. See, e.g.,
Refs. [2, 3].

This discussion leaves a question to answer: how
and when did I acquire experience with high
temperature expansions in statistical mechanics,
which prepared me to think about lattice theories and
the similar strong coupling expansion for lattice
gauge theory? It happens that two of the leading
researchers on critical phenomena in statistical
mechanics of the 1960’s were in the Chemistry
Department at Cornell, namely Michael Fisher and
Ben Widom, and they introduced me to the
challenges of this topic. I learned from listening to
them that the Ising model could serve as a “theorists’
laboratory” for the investigation of the same kind of
phenomena that lead to renormalizability challenges
in quantum field theory. The phenomena in question
include the phenomenon of anomalous dimensions
that had yet to be thought about in field theory. Such
anomalous dimensions had already been found to
occur in the exactly soluble Thirring model (see [4]),
but there had been no follow-up of this curious
result. This leads me to the next topic of this talk: my
earlier work of the 1960’s, including work on a form
of the renormalization group that seems less likely to
have been developed by someone else had I not
pursued it.
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4. 1958-1971: A THESIS PROJECT AND ITS
AFTERMATH

The history of my role in the origins of the lattice
gauge theory was a short one, confined to a single
year. But one cannot understand how I came to play
the role that I did until one understands my earlier
history as a physicist over a far longer period of
time: from 1958 to 1971.  Remarkably, I wandered
off the beaten track of physics for much of this very
long period, yet at the end of it, I was able to produce
results that would surely have taken considerably
longer to be generated by someone else in my
absence. It is also a very haphazard history; it has no
organized plan to it, although in retrospect I can
make it sound more logical than it actually was. The
outcomes of this history could not have been
anticipated in advance.  This section is, in part, an
abbreviated version of a more extensive historical
discussion that I provided in 1983 [4]. See also a
recent review by Fisher [15] and the materials and
interviews collected by the Dibner Institute’s HRST
project [16].

In 1958, I was given a project to work on for a
thesis by Murray Gell-Mann. I pursued this topic in a
direction that was different from his primary interest.
Like many second-rate graduate students, I pursued
ideas from my thesis topic for over fifteen years
before disengaging from it. This topic began as an
application of the Low equation in the one-meson
approximation to K-p scattering. In the one-meson
approximation, the Low equation was a one-
dimensional integral equation with two explicit
parameters: a meson mass, and a meson-nucleon
coupling constant.

Murray’s goal was to use the equation to help
make sense of the phenomenology of K-p scattering.
But I became fascinated with the high-energy
behavior of solutions to the Low equation, despite its
being a reasonable approximation for physics, if at
all, only for low energies. In this way, I embarked on
ten years of research that was seemingly irrelevant to
physics; but it led me to a very distinctive way of
thinking that underlies my work on the
renormalization group published in the early 1970’s,
and also prepared me to take an interest in the Ising
model and critical phenomena [4].

A crucial aid to my research was the use of digital
computers. Jon Mathews, a faculty member at Cal
Tech when I was a graduate student, introduced me

to Cal Tech’s 1950’s computer—a Burroughs
Datatron that was programmed in assembly
language. From analytical studies, I learned that the
scattering amplitude f(E) that solves the Low

equation has an expansion in powers of g
2

ln(E) for
large energy E. Using the computer, I learned that
the coefficients of this expansion are integers a(n)
multiplying the nth power of the logarithm. Then I
was able, to my surprise, to find an analytic form for
these coefficients valid for all n. This work was in
my thesis and later written up as a preprint which I
apparently never published.

I also found that the renormalization group
concepts of Gell-Mann and Low [17] were
applicable to the high-energy behavior of the Low
equation, which only strengthened my interest in this
topic. I wrote a thesis with my results up to 1961,
and, because Gell-Mann was on leave in Europe,
Feynman read my thesis. I gave a talk on it at the
theory seminar led that year by Feynman. As one
would expect, that seminar generated a Feynman
anecdote. After I finished my talk, someone in the
audience asked: “Your talk was interesting, but what
good is it?” Feynman answered, saying “Don’t look
a gift horse in the mouth!” Feynman’s answer was
prophetic, but it was not until 1971 that any real
payoff came from further research building on my
thesis results.

Two years after turning in my thesis, in 1963, I
decided to focus my research on the high-energy
behavior of quantum field theory. I knew that a
theory of strong interactions would be a theory not
soluble by perturbation theory because the
interactions involved were too strong. I also knew
that no imaginable theory of the time made enough
sense to be correct. (Quarks had yet to be proposed,
let alone taken seriously as constituents of hadrons.
For the difficult history of the quark hypothesis and
of early advocates of quarks between 1964 and 1973,
see [2].) But my main motivation in entering
physics—a decision I made in high school—was to
have interesting and productive mathematical
problems to solve. By 1963, I concluded that the
most interesting and useful mathematical problem
for me to work on was the question of high-energy,
large-momentum transfer behavior in quantum field
theory, which linked up to issues of renormalizability
and the renormalization group ideas of Gell-Mann
and Low. With this decision, I became largely
isolated from the mainstream of high-energy physics
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of the time, working instead largely in a world of my
own [2, 4].

My decision about how to focus my research was
an example of what Gerald Holton, a historian of
physics, calls a “thematic presupposition.” A
thematic presupposition is a supposition or hunch
about what some area of physics is like, or about
what kind of research will pay off, made before there
is adequate evidence to justify the hunch. Any
scientist entering a new line of research has to rely
on such suppositions or hunches, as Holton makes
clear: see [18] and [19]. (In [18], Holton has a
fascinating discussion of the failure of Kepler to
persuade Galileo to become enthusiastic about
Kepler’s ellipses, despite repeated attempts by
Kepler to attract Galileo’s attention. The early
advocates of quarks had an equally difficult time
getting respect for their concept, as Pickering
documents in chapter 4 of [2].)

I drew on a number of “theorist’s laboratories” for
my research, including the Low equation and the
more complex static fixed source theory of mesons
interacting with a fixed, point-like nucleon that
underlay the Low equation. Another laboratory was
the high-energy behavior of full field theories solved
in perturbation theory. Around 1965, I added the
Ising model to this list of laboratories for my
research, as I learned that renormalization group
ideas were as relevant for the Ising model as for
quantum field theory, in particular through an
approach to the Ising model developed by Leo
Kadanoff (see [4]).

I mastered, at least partially, as many
approximation methods as I could find that might be
useful, one being high temperature expansions for
the Ising model. These expansions were used in the
1960’s to extract critical exponents [15], which I
learned were related to the anomalous dimensions of
quantum field operators in quantum field theory.
Indeed, the Ising model could be interpreted as a
quantum field theory defined on a discrete lattice
rather than in the continuum, with the help of the
transfer matrix formalism that had already been
developed as a route to solving the Ising model [20].

I struggled to come up with something truly useful
from my research, but at the same time was happy
that I was making progress without getting to useful
results too quickly. Getting results too quickly would
mean that the problems I was working on were not

difficult enough to be as challenging as I wanted
them to be.

I will outline one of my most helpful
“experiments” conducted in a theorist’s laboratory.
Inspired by my thesis work, I was studying the fixed
source theory, in which an interaction is remarkably
simple to write down. I used:

g φ(0)•τ

where g is the coupling constant, φ is a scalar and
isovector meson field, and the τ matrices are the
isospin matrices of a nucleon fixed at the origin in
space [21]. The Hamiltonian also included a
relativistic free field Hamiltonian for a meson field
of mass m.

In order to understand the nature of
renormalization for this theory, I decided to study a
butchered form of this theory that opened up a new
way of approximating its solution. The butchered
form I called a “momentum slice” theory, in which
mesons could exist only in discrete momentum
intervals rather than at any momentum. The allowed
momentum ranges [21] could be, e.g.,

1 < |k| < 2; 1000 < |k| < 2000;
    1,000,000 < |k| < 2,000,000, …

The free field operator φ(x) in the butchered theory
was an integral of a linear combination of creation
and destruction operators:

€ 

φ (x) = k∫ (ake
ik⋅x + ak

+e−ik⋅x ) (1)

but in the integration, k is a vector whose magnitude
is confined to the discrete momentum ranges defined
above rather than varying continuously from 0 to
infinity.

There could be a finite set of these ranges, thereby
providing a cutoff form of the theory with a
maximum momentum (call it Λ) for the theory, or
there could be an infinite number of these
momentum slices, corresponding to the case of no
cutoff. The distinct momentum scales had distinct
energy scales as well. Assume the meson mass m is
of order 1. Then the meson energy in each slice is of
order of the momentum in each slice, with the meson
energy in the first slice of order 1, in the second slice
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of order 1000, and in the third slice of order
1,000,000.

Whenever a quantum mechanical Hamiltonian
involves multiple and well separated energy scales,
there is a standard rule for how one solves it: one
starts by examining the part of the Hamiltonian
involving the largest energy scale, ignoring all
smaller energies. Then one brings in the terms
involving the second largest scale, treated as a
perturbation relative to the largest scale. This is
followed by bringing in the terms of order the third
largest energy scale, treated as a perturbation with
respect to both the largest and second-largest scales.
The details for the momentum slice model are
discussed in [21].

The result of carrying out this orderly procedure
for solving the Hamiltonian was a renormalization
group transformation in a novel and unexpected
form. To a reasonable first approximation, the result
of solving the Hamiltonian on the largest energy
scale and then bringing in the next largest scale
amounted to the generation of a self energy on the
largest scale for the nucleon, then dropping the
largest energy scale terms from the Hamiltonian, but
with the replacement of g by a renormalized constant
g 1 that is related to g through a multiplicative factor
that depends on g (to be precise, the multiplicative
factor is obtained from the ground state expectation
value of τ computed using the ground state of the
unperturbed largest scale term in the original
Hamiltonian: see [21].) That is, the original
Hamiltonian with a top momentum of Λ is replaced
by the same Hamiltonian with a new coupling
constant g 1, a lowered cutoff of 0.001Λ and a self-
energy term of order Λ  for the nucleon. The
connection of g 1 to g can be written in the form

g 1 = gw(g) (2)

where w(g) is a matrix element [21], the detailed
form of which need not concern us.

Continuing the procedure brings about further
reductions in the cutoff, along with further changes
in the coupling constant. That is, solving the largest
term in the Hamiltonian with g 1 resulted in a
Hamiltonian with the second-to-largest energy scale

also removed: the new cutoff is 10
−6
Λ with a second

new coupling g 2 given by:

g 2 = g1w(g 1) (3)

The result of this analysis, so far, is a Gell-Mann-
Low type renormalization group, although with a
recursion equation giving changes in g for discrete
reductions in the cutoff rather than a differential
equation for g . See [21] for a more extended
discussion, including detailed equations for
Hamiltonians and relevant matrix elements.

But the most startling result from the momentum
slice Hamiltonian came when I solved the theory
beyond a first approximation. The result that only the
coupling constant changed was valid only if I treated
lower energy scales to first order in perturbation
theory. Given that the ratio of energy scales was
1000 in my model, it was a reasonable first
approximation to stop at first order. But for increased
accuracy, one should consider second and higher
order terms, e.g., treating terms with an energy scale
of 0.001Λ to second or higher order relative to the
energy scale Λ. Once I took higher order terms into
account, I still obtained a sequence of Hamiltonians
H 1, H 2 ,…, with progressively more energy scales
removed. But now the form of the Hamiltonians was
more complex, with a considerable number of terms
containing new coefficients rather than just a change
in g occurring. Moreover, if the computation was
carried out to all orders in the ratio of adjacent
energy scales, then all the successive Hamiltonians
in the sequence contained an infinite set of distinct
terms with distinct coefficients. What one had in this
case was a renormalization group transformation, to
be denoted by T, that replaced one Hamiltonian by
another, beginning with

H 1 = T(H), (4)

and

H 2  = T(H 1). (5)

The transformation T takes the form of a non-linear
transformation depending on all the coupling
coefficients that appear in the successive
Hamiltonians, with the number of coefficients
becoming infinite if the transformation is computed
exactly.

In the case that the ratio of successive energy
scales is 1000, the extra coefficients have only a very
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minor role in the transformation, with the simple
recursion formula for g  being the dominant
component in the transformation. But if one wants to
avoid the artificiality of the momentum slice model,
then one has to define momentum slices with no
gaps, e.g.,

1 < |k| < 2; 2 < |k| < 4; 4 < |k| < 8, …

In this case the ratio of energy scales is only 2
instead of 1000, and it is no longer clear that one can
use a perturbative treatment at all, let alone drop all
but the lowest order terms. In this case, if anything at
all could be done through perturbation theory, it
would clearly involve the use of high orders of
perturbation theory, with the result that the
transformation T would necessarily generate very
complex Hamiltonians with very many coefficients
to determine.

In retrospect, the discovery of this new form of the
renormalization group, with complex Hamiltonians
being transformed into other complex Hamiltonians,
was a major advance. It provided me with a way to
formulate the renormalization group that could be
applied to theories in strong coupling—there was no
requirement that g be small, unlike the Gell-Mann-
Low formulation which was completely tied to
perturbation theory in g. But at the time there was
nothing I could do with this idea. It potentially
established a new world of research, but one that was
so ugly that only its mother—namely me—could
love it. It is not surprising that I could not do
anything with this idea very quickly, and I focused
for a while on other aspects of my research.

Somewhat to my surprise, in the early 1970’s I was
able to extract two very practical payoffs from the
new world of renormalization group transformations
involving very many couplings rather than just one. I
will skip the remainder of the history leading up to
these payoffs: see [4,15,16] for some remaining
details of this history.

The first payoff, obtained in 1971 and 1972, was
the result that is now the dominant factor in my
overall reputation as a physicist. The result came in
two stages, the second being considerably more
useful than the first. The first stage result was a very
crude approximation to a renormalization group
transformation that had intermediate complexity. The
transformation took the form of a one-dimensional
integral equation for a very restricted class of

Hamiltonians for simple models of critical
phenomena in statistical mechanics. But for the
benefit of the audience, the transformation can
equally be understood to be a transformation for a
restricted class of actions for a scalar field φ in an
arbitrary space-time dimension d. The restricted class
of actions includes a free field term and a completely
local interaction term that involves all even powers

of φ , not just φ
2

 and φ
4

. Odd powers could be
added, too, as needed. If one denotes this sum of
powers as a function u of a scalar variable φ, then the
transformation has the generic form

u 1(φ) = T(φ,u,d) (5)

where T is defined in terms of an integral involving
the function u along with other manipulations. See
[22] for the details. This transformation turned out to
be straightforward to program; moreover, I had
access to an empty PDP10 that was installed at
Newman Lab and brought to working order just a
few weeks before I arrived at this intriguing
transformation and wanted to learn more about it.

The second stage of the payoff came when
Michael Fisher and I jointly recognized that the one-
dimensional integral equation could be solved
analytically in a perturbation expansion in d about d
= 4. In the perturbation expansion, the function u had

an unperturbed φ
2

 term, and the leading perturbative

term was a φ
4

 term with a coefficient of order (4 –
d). See [23] for details. But this led to the realization
that critical exponents could be computed in an
expansion in powers of (4 – d) using exact Feynman
diagrams computed for non-integral dimension d
[24], bypassing the rough approximations that
underlie Eq. (5). Many theorists already knew how to
compute Feynman diagrams, and the changes needed
to bring in a non-integer dimension were quite minor
[24]. Moreover, the expansion in (4 – d) could be
applied to all kinds of statistical mechanics
computations, such as equations of state and various
kinds of scattering phenomena [15]. There was
already a powerful community of researchers on
critical phenomena that had identified a broad variety
of phenomena worth studying. The result was an
explosion of productive research that built up over
the subsequent decade, in striking contrast to the
slower build-up of research on lattice gauge theory,
which was limited in the years after 1974 because of
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limitations in computing power and in algorithms for
using what computing power was available. See [4]
for a variety of further references on the explosion of
research in critical phenomena following the second
stage of the breakthrough achieved by Fisher and
myself [23,24].

In retrospect, I believe that the expansion in (4 – d)
for critical phenomena was also a discovery waiting
to happen, although it is not clear how or when it
would have happened if my research had not
occurred. What is important is that at the time there
were other physicists familiar with both critical
phenomena and quantum field theory, from Migdal
and Polyakov to Jona-Lasinio and DiCastro (the
latter two were already exploring the applicability of
the Gell-Mann-Low renormalization group to critical
phenomena: see [4]). The concept of using non-
integer dimensions was in the air, too, because of its
use for dimensional regularization of gauge field
theories: see [4].

But there is also now a broader and very elegant
renormalization group framework based on the
concept of renormalization group transformations
acting on an infinite dimensional space of
Hamiltonians (of the kind that appear in Boltzmann
factors in statistical mechanics). The elegance begins
with the concept of a renormalization group fixed

point: a Hamiltonian H
*

 that satisfies

€ 

H* = T (H*) . (6)

The formalism includes the concept of relevant and
irrelevant operators, in particular as developed by
Franz Wegner. See [15] for a recent review that puts
this formalism into perspective. I believe that even
this formalism would have emerged eventually if my
work had never occurred, because of the need to
define and learn about irrelevant operators near fixed
points, and because of the availability of researchers
capable of developing this concept. But it could have
taken a number of years for the expansion in (4 – d)
and the fixed-point formalism to emerge in the
absence of my research. See [15] for a recent review
of the impacts of the renormalization group ideas on
research in critical phenomena; see also the
interviews conducted by the HRST project staff of
the Dibner Institute [16].

The other payoff from my work in the 1960’s was,
if anything, even more of a surprise. It was an

approximate numerical solution of a model of an
isolated magnetic impurity in a metal, called the
Kondo model or Kondo problem. This model was
very similar in structure to the fixed source model
that was the starting point for the momentum slice
analysis discussed above; the main difference was
that a free electron (fermion) field was coupled to an
impurity treated as a fixed source. The electron
energy was a simplified form of the electron energy
near the Fermi surface of a metal: see [25]. The
numerical approach is based on a momentum slice
formulation of the model, but with no gaps between
slices, and uses a strictly numerical approximation
scheme that avoids any use of the perturbative
expansion outlined above. The scheme required the
use of a supercomputer of the time, namely a CDC
6600 located at Berkeley that I accessed through a
remote batch terminal. For details on the
computation and its results, see [25]. I expected the
key results to be accurate to around a percent,
according to internal consistency arguments.
Astonishingly, the model turned out later to have an
exact analytic solution, which agreed with my
numerical result to within its estimated errors, but
just barely. For a recent review of work on the
Kondo problem that provides a modern perspective
on my work among a number of other topics, see
[26]. My work on the Kondo problem is the work
that seems least likely to have been produced by
someone else if I had not done it. To my knowledge,
no one else was thinking about the momentum slice
approach to the renormalization group, let alone
developing the skills needed to mount a large-scale
computation based on it. It was amazing that the
computing power of a CDC 6600 was enough to
produce reasonably accurate numerical results.
Moreover, there is a simple aspect to this work that I
never published (which I now regret) and seems not
to have been discovered and reported by anyone else.
Namely, the Kondo calculation becomes simple
enough to carry out on a pocket calculator if one
makes a momentum slice model of the Kondo
problem with large separations between slices and
simplifies each slice. My work on the Kondo
problem would surely have been easier for other
researchers to understand and build on if I had also
published the much simpler form of the
renormalization group transformation that results
when one butchers the free electron field of the
Kondo Hamiltonian to allow only well separated
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momentum slices in the way that was done for a
scalar field in [21].

I have a closing comment. I reviewed my history
between 1958 and 1971 in part because it provides
background for my work on lattice gauge theory. But
I also reviewed it because someday it may prove
useful to apply the momentum slice strategy to some
other seemingly intractable many-body problems.

5. BLUNDERS AND A BIZARRE EPISODE

In the early 1970’s, I committed several blunders
that deserve a brief mention. The blunders all
occurred in the same article [27]: a 1971 article about
the possibility of applying the renormalization group
to strong interactions, published before the discovery
of asymptotic freedom. My first blunder was not
recognizing the theoretical possibility of asymptotic
freedom. In my 1971 article, my intent was to
identify all the distinct alternatives for the behavior
of the Gell-Mann–Low function β(g ), which is
negative for small g  in the case of asymptotic
freedom. But I ignored this possibility. The only
examples I knew of such beta functions were
positive at small coupling; it never occurred to me
that gauge theories could have negative beta
functions for small g. Fortunately, this blunder did
not delay the discovery of asymptotic freedom, to my
knowledge. The articles of Gross and Wilczek [6]
and Politzer [7] soon established that asymptotic
freedom was possible, and ‘t Hooft had found a
negative beta function for a non-Abelian gauge
theory even earlier [2].

The second blunder concerns the possibility of
limit cycles, discussed in Sect. III.H of [27]. A limit
cycle is an alternative to a fixed point. In the case of
a discrete renormalization group transformation,
such as that of Eq. (6), a limit cycle occurs whenever

a specific input Hamiltonian H
*

 is reproduced only
after several iterations of the transformation T, such
as three or four iterations, rather than after a single
iteration as in Eq. (6). In the article, I discussed the
possibility of limit cycles for the case of “at least two
couplings”, meaning that the renormalization group
has at least two coupled differential equations: see
[27]. But it turns out that a limit cycle can occur even
if there is only one coupling constant g  in the
renormalization group, as long as this coupling can
range all the way from –∞ to +∞. Then all that is
required for a limit cycle is that the renormalization

group β  function β(g) is never zero, i.e., always
positive or always negative over the whole range of
g. This possibility will be addressed further in the
next section, where I discuss a recent and very novel
suggestion that QCD may have a renormalization
group limit cycle in the infrared limit for the nuclear
three-body sector, but not for the physical values of
the up and down quark masses. Instead, these masses
would have to be adjusted to place the deuteron
exactly at threshhold for binding, and the di-neutron
also [28].

The final blunder was a claim that scalar
elementary particles were unlikely to occur in
elementary particle physics at currently measurable
energies unless they were associated with some kind
of broken symmetry [23]. The claim was that,
otherwise, their masses were likely to be far higher
than could be detected. The claim was that it would
be unnatural for such particles to have masses small
enough to be detectable soon. But this claim makes
no sense when one becomes familiar with the history
of physics. There have been a number of cases where
numbers arose that were unexpectedly small or large.
An early example was the very large distance to the
nearest star as compared to the distance to the Sun,
as needed by Copernicus, because otherwise the
nearest stars would have exhibited measurable
parallax as the Earth moved around the Sun. Within
elementary particle physics, one has unexpectedly
large ratios of masses, such as the large ratio of the
muon mass to the electron mass. There is also the
very small value of the weak coupling constant. In
the time since my paper was written, another set of
unexpectedly small masses was discovered: the
neutrino masses. There is also the riddle of dark
energy in cosmology, with its implication of possibly
an extremely small value for the cosmological
constant in Einstein’s theory of general relativity.

This blunder was potentially more serious, if it
caused any subsequent researchers to dismiss
possibilities for very large or very small values for
parameters that now must be taken seriously. But I
want to point out here that there is a related lesson
from history that, if recognized in the 1960’s, might
have shortened the struggles of the advocates of
quarks to win respect for their now accepted idea.
The lesson from history is that sometimes there is a
need to consider seriously a seemingly unlikely
possibility. The case of Copernicus has been
mentioned. The concept that the Earth goes around
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the Sun was easily dismissed at the time because of a
claim that the stars should not be as far away from
the Earth as was needed, namely much farther away
than the Sun. In the case of stars not much farther
than the Sun, their location in the sky would make
easily observable changes as the Earth moves around
the Sun. But the reality was that observers in
Copernicus’ day had no evidence allowing them to
actually determine the distance of the nearest star
and prove that it was not much farther away than the
Sun. There was a second problem with Copernicus’
concept that made it even less acceptable. The belief
at the time was that bodies in motion would come to
a stop in the absence of any force on them. Thus it
was assumed that if the Earth was in motion, and a
person jumped off the ground, that person would
come to a halt while the Earth kept moving, leaving
the person behind. But no one who jumps off the
ground is left behind in practice. It was not until a
century later that precursor forms of Newton’s first
law of motion became available and helped to
remove this concern. (A reference for this history
from Copernicus on is [29].)

The concept of quarks, especially as formulated by
George Zweig in 1964, suffered similarly, but from
three obvious flaws. One was that, as initially
proposed by Zweig, it violated the connection
between spin and statistics. The second was that it
required fractional charges, smaller than the electron
charge previously thought to define the smallest
possible unit of charge. The third flaw was that it
proposed low-mass constituents that should have
been easily visible in the final states of scattering
experiments, yet none were seen [2].

The violation of the connection between spin and
statistics of the original proposal was and remains
unacceptable. But within a couple of years, there
were proposals to triple the number of quarks in a
way that also allowed quark charges to be integers,
reducing the number of flaws from three to one [2].
The proposed increase from 3 to 9 in the number of
quarks was hard to take seriously until there were
data to support it, but the concept could not be ruled
out. The final presumed “flaw” turned out to be
based on a claim that constituents had to be capable
of existing in isolation that is valid only for weakly
coupled quantum field theories, which are the only
form of quantum field theory that theorists knew
anything about at the time. But the lack of
knowledge about what was possible in a strongly

coupled field theory did not stop many field theorists
of the 1960’s from being very negative about the
quark concept, and I was among those with little
enthusiasm for it.

Even today there are areas of physics where we
know astonishingly little and where some seemingly
preposterous proposals could turn out to be true. To
help enable such proposals to be treated skeptically,
yet still with respect, I have a suggestion for
discussion. My suggestion is that the physics
community agree to establish a special category of
proposals that seem widely unacceptable but cannot
and should not be ruled out. I suggest that this
category be called “Pauli proposals” in honor of
Pauli’s dismissal of an article sent to him because “it
was not even wrong!” I suggest that a list of past
“Pauli proposals” that ultimately proved successful
be compiled and published to help all physicists
understand how often such “Pauli proposals” have
overcome initial skepticism. Notable past examples
include the Copernican theory, the theory of
nineteenth century geologists and biologists that the
Sun had been shining for hundreds of millions of
years, and the quark hypothesis of Zweig. Some
nominees for Pauli proposals for here and now will
be discussed in the next section.

In support of using Pauli’s name for this list of
proposals, I have a Pauli anecdote. Pauli gave a
seminar at Cal Tech around 1960 when I was there,
in which he talked about his perspective on a unified
field theory proposed at the time by Heisenberg. He
opened the seminar by saying, “I can paint like
Titian.” He turned to the blackboard and drew a huge
rectangle on it. Then he said, “All that is left is to fill
in the details.”

But his real complaint was that the details
Heisenberg did supply were pedestrian. His theory
was not crazy enough to be interesting.

To close this section, I turn to a bizarre and
humorous incident that occurred in the early 1970’s.
By then I had published a very daunting article [30]
proving that the full transformation T of the
momentum slice version of the scalar fixed source
theory [see Eqs. (4) and (5)] did not lead to
significantly different results than the much simpler
leading order approximations of Eqs. (2) and (3). My
worry was that through many iterations of the full
transformation T, the resulting Hamiltonians H n , for

n  = 1,2,3,4,..., would drift steadily away as n
increased from the much simpler Hamiltonians of the
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leading order approximation. With the help of a long
sequence of upper bounds on higher order terms, I
concluded that no such drift could occur if the ratio
of energies in successive momentum slices was small
enough. After the publication of this article in the
Physical Review [30], I got a phone call from
someone who claimed that he had read and admired
this article. He also had some thoughts that he
wanted to share with me, and offered to come to
Ithaca for a private meeting. I was taken aback that
anyone would actually read the article in question,
and I agreed to a meeting that took place on a
Saturday morning in Ithaca, with me staying at the
door to Newman Laboratory to let in my visitor. The
essence of our conversation was that my visitor had a
view of how the world worked with which he was
sure I would be sympathetic. His view was that the
world we live in is actually a computer simulation
conducted in a higher-level world invisible to us.
Moreover, he was especially proud of his
explanation for quantum mechanical uncertainty.
This uncertainty is due to bugs in the computer
simulation program.

The reason he thought I would be interested in his
thinking is that he realized that the higher order
world would also be a computer simulation in an
even higher-level world. He expected that these
higher order worlds exist in a long progression, just
like the iterations of the renormalization group that
characterized my work. I kept listening. But then he
asserted that eventually one comes to a computer
simulation run by a Supreme Being. At that point I
managed to terminate the conversation. My visitor
left, and I have not heard from him again. I try to be
open-minded, but I am not prepared to follow up on
his proposal, not even as a candidate for the list of
Pauli proposals.

6. CONCERNS FOR THE FUTURE OF
LATTICE GAUGE THEORY

I will now return to the topic of lattice gauge
theory, and discuss some concerns that I have about
it for the present and the future. My first concern,
mentioned in the Introduction, is that the currently
accepted QCD Lagrangian may not be the correct
one, as discussed below. My second concern is to
point out the unexpected possibility that QCD has a
limit cycle in the three-nucleon sector, and discuss
what this implies for lattice gauge theory. My third

concern is to suggest that there needs to be more
attention to research on light-front QCD as a
complement to research on lattice gauge theory.
Finally, I discuss the expense of lattice gauge theory,
and indeed of high-energy physics as a whole, and
the issue of justifying this expense in an increasingly
confusing world.

I have had a concern about the correctness of the
QCD Lagrangian from the inception of lattice gauge
theory. In my view, a major purpose of developing
and trying to solve lattice gauge theory is in order to
determine whether the QCD Lagrangian truly does
account for strong interactions, and if so, to what
accuracy does it explain experimental results? At the
beginning of this article, I saluted the progress that
has occurred on lattice gauge theory, which includes
computations that seem to agree with experiment to a
few percent, as is discussed in other talks in these
Proceedings. But how large are the computational
errors in the numbers reported due to limited size
effects, and especially due to the approximations
used to handle quark vacuum polarization effects? I
suspect that it is still too soon to be able to provide
reliable upper limits for these errors.

However, one serious shortcoming of my own
writings about lattice gauge theory has been that I
have never expressed my skepticism about the
correctness of the QCD Lagrangian in a useful form.
I have never suggested what realistic alternatives to
the QCD Lagrangian might look like and should be
tested for. By now, any concrete proposal for an
alternative to QCD would constitute a Pauli
proposal, because there is no evidence (to my
knowledge) that requires consideration of the
alternatives I will discuss. But when one looks at the
structure of the known families of elementary
particles: the quark family, the two lepton families,
and even the vector gauge boson multiplet of the
photon, W and Z particles, one has to ask a question.
Does the gluon octet have unsuspected partners? I
remind readers that the neutron and the muon,
partners for the proton and electron, respectively,
were entirely unsuspected at the time they were
discovered. Thus there is ample precedent for more
partners for the gluon to exist even if they were not
anticipated in any theorist’s specific model.

There are already serious suggestions for possible
partners for the gluon that are discussed in the
reports of the Particle Data Group, such as
supersymmetric partners, which would be fermions
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[31], or a separate suggestion for the existence of
axigluons (pseudovector gluons) [31]. These
suggestions come from specific models that extend
the Standard Model, and certainly research on these
possibilities should continue. But my view is that,
during the next decades, lattice gauge computations
should become increasingly accurate and reliable,
and as they do, discrepancies with experiment could
arise that cannot be explained by either experimental
or computational errors. I have asked myself how I
would try to explain such discrepancies if they
should occur and not be explainable by any of the
presently proposed extensions of the Standard
Model. It is hard to give an answer without knowing
where these discrepancies arise and what their
magnitudes are, but I have a possibility to propose
even in the absence of such information. The
possibility I suggest is that the gluon has heavier
partners that are either of the same type (uncharged
vector particles that are also color octets) or are
scalar rather than vector particles. Unfortunately, I
cannot make any guesses as to the masses or the
strength of the color couplings of these hypothetical
particles, which means that searches for them cannot
rule them out altogether but might set various kinds
of bounds on their masses and coupling constants. I
do not have the time or assistance to do detailed
computations of how such particles might change the
predictions of normal QCD, and without such
information I think a list of Pauli proposals might be
the right place for my suggestion. However, if some
other physicists do carry out and publish such
computations, then they could deserve, and receive,
serious consideration by experimentalists. Any such
physicists should get primary credit if the gluon
partners for which they do computations are
subsequently discovered.

The next topic is research by nuclear physicists on
a possible limit cycle in the nuclear three-body
problem. Curiously, the basic theoretical
phenomenon of this limit cycle was discovered
around 1970 (over thirty years ago) by Efimov [32].
The initial discovery of Efimov is that a non-
relativistic system of three equal mass Bose particles
with delta function two-body potentials and a
suitable cutoff (the theory is not soluble without a
cutoff) has an infinite set of discrete bound states
with a point of accumulation at zero energy. This
comes with the proviso that the two-body system has
a bound state exactly at threshhold. Moreover, as the

bound states come closer to zero energy, the ratio of
successive three-body bound state energies
approaches a fixed limit of about the reciprocal of
515.03.

The connection to the renormalization group and
the possibility of a limit cycle was not recognized
until much more recently, starting with a paper by
Bedaque, Hammer, and Van Kolck [33] in which a
three-body delta function term with a coefficient h
was added to the Hamiltonian. They showed that if
one tried to renormalize the Hamiltonian with both
two-body and three-body delta functions terms, to
obtain fixed renormalized eigenenergies while a
momentum cutoff was increased to infinity, then the
two-body coupling approached a constant. But the
three-body coupling h went through an unending
limit cycle, cycling from –∞ to +∞ and then jumping
to –∞ to repeat the cycle. But the Bedaque et al.
article [33] does not explicitly recognize that they
were seeing a renormalization group phenomenon,
namely a limit cycle of the kind that I discussed in
my 1971 paper, although with only one coupling
constant participating in the cycle.

To my surprise, a related recent discovery is that a
colleague of mine named Stan Glazek, who spent a
year at The Ohio State University, and I had written
a paper in the early 1990’s that included, in an
appendix, a much simpler model Hamiltonian that is
exactly soluble and exhibits a very similar
renormalization group limit cycle [34]. But our paper
also does not recognize that the solution is an explicit
example of a limit cycle. More recently, Glazek and I
have published two articles [35,36] showing how the
limit cycle works in detail for our simple model,
which is considerably easier to understand than the
three-body model discussed by Bedaque et al. [33].

Perhaps the most fascinating possibility, for lattice
gauge theorists, is a proposal that QCD could exhibit
the remarkable low energy bound state structure
found by Efimov, if the up and down quark masses
are adjusted to produce bound states just at
threshhold in both the two-body proton-neutron and
di-neutron sectors [28]. The proposal is just that: a
proposal. No one knows whether the Efimov
behavior actually occurs for QCD. The argument that
it could happen relies on a claim of universality (see
[15] for a generic discussion of universality): if a
renormalization group transformation is constructed
for the three-body nuclear system at very low (hence
non-relativistic) energies, the Hamiltonian for this
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transformation would iterate towards the same limit
cycle as for the case of delta function potentials that
has been solved explicitly. But because QCD at low
energies is a strongly coupled system, there is no
way of knowing in advance whether QCD, with the
appropriate choice for the up and down quark
masses, is in the same universality class as the delta
function potential case. Otherwise it could belong to
a different universality class with a totally different
behavior for low energy three-body bound states.

My third topic is the understaffing of light-front
QCD as an area of research complementary to lattice
QCD. The heyday of light-front QCD occurred
before QCD was formulated, namely in the days of
the non-relativistic constituent quark model and
Feynman’s quark parton model. Collinear SU(6)
symmetry became a basis for classifying hadrons,
and the energy formula for quarks on the light front
resembles the non-relativistic formula for transverse
momenta although not for longitudinal momenta. But
once QCD became popular, it quickly became clear
that formulating this theory on the light front led to
very thorny problems—the simplicity of the quark
parton models could not be obtained, because of the
strong coupling that meant that one would have to
compute perturbation theory to very high orders, or,
better, find a non-perturbative approach altogether.

But in the period from 1990 to 1994, I became part
of a group of physicists at Ohio State University,
including Robert Perry and Stan Glazek and various
post-doctoral fellows and graduate students that
made a new effort to make sense of light-front QCD
in the real world of four dimensions. Our unproven
“thematic presupposition” was that, for whatever
reason, the QCD coupling in light-front theory never
got large enough to make low orders of perturbation
theory completely useless. We wanted to find a
precise connection between full QCD and the much
simpler picture of collinear SU(6) of quark bound
states with energies determined to a considerable
extent by “constituent” masses of free quarks, a
contribution from an SU(6) invariant potential, and
with symmetry-violating terms small enough to be
treated perturbatively, yielding sum rules relating
excited state energies in the presence of these
perturbations. See [2] for some references. We made
the assumption of a small QCD coupling at low
energies out of desperation: we could not see how to
get back the good features of the constituent quark
model and the quark parton model unless the

coupling somehow stayed at least moderately weak,
even at low energy scales (below 1 GeV). We
completely rethought the problems of
renormalization of the light-front QCD [37], arriving
at an analysis of the renormalization problem that
has a number of novel and helpful features, such as a
version of the renormalization group called
“similarity” that is very helpful in organizing a light-
front computation and an initial hypothesis about
some new terms that need to be added to the
Lagrangian to reflect the non-trivial vacuum of
broken chiral symmetry.

After 1994 our group was weakened because both
Perry and I dropped out to pursue other matters,
leaving Stan and his graduate students to carry the
ball, which he has done although not at the speed that
a larger group could have done. But I want to
indicate why the time is ripe for a few accomplished
theorists to switch into light-front theory and help
build a growing research effort in this area. The first
question, what is our most notable accomplishment
to date, is one to which I have a surprising answer. It
is the simple model of a limit cycle that was
proposed in the paper [34]. This paper was written as
part of the early work on light-front QCD in which
our group was engaged, and it illustrates that, as in
the previous sections, one often cannot predict in
advance what the most interesting outcomes of a
research effort will be at the time it is started. I
suspect that continuing research on light-front theory
is likely to yield equally interesting new surprises.

But I now come back to the presupposition of our
work. I can offer a simple, but bittersweet argument
about the size of the coupling constant at energies
below 1 GeV. It is a very simple argument in a
preliminary form that is as yet unverified by any
serious calculation.

The basic claim of the argument is that the running
coupling constant of QCD is likely to become strong
in the pure glue sector at a considerably higher value
of the running cutoff than the QCD scale for quarks.
Stated directly in terms of constituent masses, I
believe that the best value for a constituent gluon
mass is likely to be considerably higher (such as a
factor of two to four) than the best values of the
constituent up and down quark masses. Why? I use
an analogy to the case of QED. In QED, atomic
states involving 2 electrons and a helium nucleus are
considerably more tightly bound than atomic states
of hydrogen, simply because of the doubling of the



15

charge in the case of helium. But in QCD, gluons
belong to the octet representation, which should
yield color SU(3) Clebsch-Gordon coefficients that
are something like a factor of two larger than for the
quark representation. This leads me to the hope that
whatever the mechanism that leads to a non-zero
lowest mass state in the pure glue sector (neglecting
quarks) is, it would not require as large a value for
the running value of g as quark binding requires.
This would lead to a considerably higher mass for
the glueball, and hence for the constituent glue
particles, than for the non-zero constituent masses of
quarks.

There is a second stage to the argument, equally
unproven. Namely once there is a non-zero lowest
mass in the pure glue sector, this lowest mass should
stop any further running of the quark-gluon coupling
constant—it never gets large enough to truly bind
quarks, but the quarks are bound anyway because of
the linear potential between quarks if they separate
very far. Hence the coupling strength between
constituent quarks is relatively small, and many of
the results of the constituent quark model apply
because of this, from the SU(6) classification of
bound states to Zweig’s rule. In particular, this
assumes that the gluon interactions are replaced by
an effective potential between quarks that is not
small (being linear) but that is invariant under SU(6);
while couplings that explicitly break SU(6) are
small.

This is a bittersweet result because it implies that
one has to get to the very edge of perturbation
theory, if not beyond it, in the pure glue sector in
order to arrive at a non-zero lowest mass for the
lowest mass glueball and to derive the potential of
interaction between constituent quarks (including a
linear behavior at long distances). But if one can find
some way to do this, then one could hope to find that
constituent quarks have other relatively weaker
interactions that are more easily treated as
perturbations relative to the bound state energies of
constituent quarks in a potential. However, there
would still be complications due to the presence of a
considerably lower energy scale associated with the
pion mass as one gets close to exact, but
spontaneously broken, chiral symmetry.

There is an intriguing suggestion in the 1994
article about how spontaneously broken chiral
symmetry might work in light-front QCD that is very
different from normal QCD. In normal QCD, chiral

symmetry is conserved only if the quark mass is
zero. But in the renormalized light-front theory, this
is no longer the case, at least according to our
analysis, which unfortunately we can not prove: it
also qualifies as a thematic presupposition. But I
believe that it satisfies the Pauli criterion: our
analysis in [37] might be wrong, but it is not dull.

To conclude this part of this section, I will sum up
by saying that light-front QCD is not for the faint of
heart, but for a few good candidates it is a chance to
be a leader in a much smaller community of
researchers than one faces in the major areas of high-
energy physics, with, I believe, unusual promise for
interesting and unexpected results.

My last topic is how to justify the expense of
lattice gauge theory, indeed of high-energy physics
as a whole, in a world that is confusing and
changing. My answer is that one reason for
governments to fund physics is the capabilities that
very accomplished physicists acquire to tackle
exceedingly complex problems and bring some kind
of order to them. Until the end of the cold war, senior
physicists with a lot of experience in military matters
were able to provide very valuable and disinterested
advice to Congress and the executive branch about
technical, complex, and very expensive military
matters.

But now the dominant issues facing government
involve issues that economists and other social
scientists study, and the government now gets more
advice from social scientists than from physicists.
Even military issues are hard to separate from social
issues, as “winning peace” becomes as much an issue
as winning wars. Moreover, while the physicists who
provided military advice had considerable experience
with military issues upon which to draw for their
advice, there are as yet few physicists who know
enough about the present state of social science to be
of as much help as they might be with more
knowledge and experience. I suggest that high-
energy physicists might give some thought to what
are the most daunting social and economic problems
of today, and whether there could be any way to
recruit and assist a few exceptionally capable
physicists to learn considerably more about these
problems.

I make this suggestion because my own recent
experience with the present state of historical
research has opened my eyes to the history of
physicists making unique contributions to dominant
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issues facing society at large, from Benjamin
Franklin’s role in the founding of the US as a nation
to the less well-known but very interesting history of
physicists helping to advance such key technologies
as electric power about a century ago [38].

7. CONCLUSION

In summary, I hope I have provided a sense of how
my personal experiences contributed to
developments in the 1960’s and 1970’s by the
community of researchers in high-energy physics
and in critical phenomena that existed at that time. I
hope I have conveyed a sense of how limited was my
accomplishment of that time, at least in lattice gauge
theory, compared to what is now known. I have
raised the issues of whether my accomplishments
were “discoveries waiting to happen” that would
have eventually been accomplished by someone else
if my research had gone in a different direction. I
have discussed shortcomings in my own work, and
the extent to which subsequent research has
overcome these shortcomings. I have offered a
proposal to establish a “Pauli list” of seemingly
questionable proposals that deserve more respect
than they might otherwise receive, based on
experiences from that of early Copernicans to those
of advocates of quarks in the 1960’s. But I hope I
have also conveyed a sense of longer-term progress
in the physics of gauge theory that could underlie a
healthy research enterprise for a considerable time
into the future, with unexpected benefits to society
arising partly from leading elementary particle
physicists who apply their unusual experience in the
solving of complex problems to problems of key
importance for society as a whole.
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